Machine Learning Bootcamp (EN)

You will be guided by Jiří Materna

Je specialista na strojové učení se zkušenostmi s jeho aplikacemi v průmyslu od roku 2007. Mezi lety 2008 a 2017 pracoval ve společnosti Seznam.cz, z…

Information

Description

This is a weekly intensive series of all our courses at a discounted price.

The package contains:

  • Introduction to machine learning (2 days)
  • Convolutional neural networks and image processing (1 day)
  • Natural Language Processing (1 day)
  • Time Series (1 day)

Contents

Day 1
  • What is machine learning?
  • Types of machine learning (classification, regression, ranking, reinforcement learning, clustering, anomaly detection, recommendation, optimization)
  • Data preparation (train, test and validation data sets, imbalanced and noisy data)
  • Classification model evaluation (accuracy, precision, recall, confusion matrix, ROC, AUC)
  • Basic algorithms for classification (baseline models, Naïve Bayes Classifier, Logistic regression, Support Vector Machines, decision trees, ensemble models)
  • Quick Scikit-Learn tutorial (how to load and transform data, training models, predicting values, model pipelines and evaluation)
  • Practical classification task
  • Basic algorithms for regression (analytical methods, gradient descent, SVR, regression trees)
Day 2
  • Basic algorithms for clustering (K-means, hierarchical clustering)
  • Practical clustering task
  • Introduction to artificial neural networks (why they are so popular, what their advantages and disadvantages are, perceptron neural network)
  • Most frequently used activation functions (Sigmoid, Linear, Tanh, Relu, Softmax)
  • Multi-Layer neural networks  (back propagation algorithm, stochastic gradient descent, convolution, pooling, regularizations)
  • Quick tutorial to Keras (sequential models, optimizers, training, data workflow)
  • Practical classification and regression tasks using neural networks
Day 3
  • Introduction to natural language processing
  • Chapters from computational linguistics (corpus, tokenization, morphological, syntactic and semantic analysis, entropy, perplexity)
  • Text document vectorization (bag of words, one-hot encoding, TF-IDF)
  • Practical taks on text classification
  • Word embedding (word2vec, GloVe)
  • Introduction to language modelling (n-gram models, smoothing, neural network based language models)
  • Practical task on language modelling (implementation of a language detection algorithm based on language models)
  • Neural network based text generator
Day 4
  • Back to the history
  • What the convolution is and why it works
  • TensorFlow (designing a simple convolutional neural network)
  • Practical classification task with the Fashion MNIST data set.
  • Experiments with the MSCOCO and ResNet data sets
  • Visualisations using TensorBoards
  • Image classification
  • How to deal with noisy data
Day 5
  • Introduction to the theory of time series modeling
  • Classical methods for time series prediction (space & frequency domain, spectral analysis, autocorrelation, ARIMA models etc.)
  • Hands-on example (pandas, basic characteristics, simple prediction)
  • Machine learning for time series prediction (state-space methods, Hidden Markov Chain, Kalman filter, classical neural networks, recurrent networks, LSTM)
  • Hands-on examples of machine learning methods (training set preparation for specific task and model, training process & evaluation)
  • Complex example of time series prediction using recurrent neural network (temperature prediction from high-dimensional input data: training data set preparation, training process & validation, prediction with trained neural network)

Prerequisites

No previous knowledge of machine learning is required.

Machine Learning Bootcamp (EN)

Selected course term

 Prague

Price
21 990 CZK + 21% VAT

Contact the supplier


Because of spam protection, please answer the following question how much is two and ten ? Write the sum in digits.