Probabilistic Graphical Models (EN)

You will be guided by Jiří Materna

Je specialista na strojové učení se zkušenostmi s jeho aplikacemi v průmyslu od roku 2007. Mezi lety 2008 a 2017 pracoval ve společnosti Seznam.cz, z…

Information

Description

This course is intended for people interested in Bayesian networks and probabilistic programming.

The theoretical part at the beginning of the course will lead to a practical example of topic modeling using Latent Dirichlet Allocation and its non-parametric extension including hyperparameter estimation. By completing this course, the participants should be able to design and implement their own simple Bayesian networks for various problems.

Contents

  • Bayesian networks
  • Model representation
  • Generative vs. discriminative models
  • Statistical inference in Bayesian networks
    • Variational inference
    • Sampling
      • Rejection sampling
      • Markov Chain Monte Carlo
      • Metropolis-Hastings sampling
      • Gibbs sampling
  • Probability distributions
    • Binomial and multinomial distributions
    • Beta and Dirichlet distributions
    • Gamma distribution
  • Probabilistic programming languages
  • Practical example with topic modeling
    • Latent Semantic Analysis
    • Probabilistic Latent Semantic Analysis
    • Latent Dirichlet Allocation
  • Non-Parametric topic modelling
    • Dirichlet process
    • Chinese restaurant process and Stick breaking process
    • Non-parametric LDA
  • Hyperparameter estimation

Prerequisites

  • basic knowledge of programing in Python
  • high school level of mathematics

Probabilistic Graphical Models (EN)

Selected course term

 Prague

Price
4 990 CZK + 21% VAT

Contact the supplier


Because of spam protection, please answer the following question how much is four and five ? Write the sum in digits.